
Information and Software Technology 49 (2007) 564–575
www.elsevier.com/locate/infsof

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.02.004

Self-organization of teams for free/libre open source 
software development

Kevin Crowston ¤, Qing Li, Kangning Wei, U. Yeliz Eseryel, James Howison
Syracuse University School of Information Studies, 348 Hinds Hall, Syracuse, NY 13244, USA

Available online 13 February 2007

Abstract

This paper provides empirical evidence about how free/libre open source software development teams self-organize their work, speciW-
cally, how tasks are assigned to project team members. Following a case study methodology, we examined developer interaction data
from three active and successful FLOSS projects using qualitative research methods, speciWcally inductive content analysis, to identify the
task-assignment mechanisms used by the participants. We found that ‘self-assignment’ was the most common mechanism across three
FLOSS projects. This mechanism is consistent with expectations for distributed and largely volunteer teams. We conclude by discussing
whether these emergent practices can be usefully transferred to mainstream practice and indicating directions for future research.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Free/libre open source software development; Task assignment; Self-organizing teams; Distributed teams; Qualitative research methods;
Coordination

1. Introduction

Researchers have increasingly realized that large-scale
software engineering is a social activity involving numerous
developers and other professionals working closely
together in a tightly coordinated process. In order to under-
stand this social activity, researchers have expanded their
focus to include not just the code, but also the processes
and social practices that create it. To better understand the
social side of software development, we apply a qualitative
empirical method that aims at building understanding of,
rather than just measuring, development practices.

We are particularly interested in the problems of distrib-
uted development because distributed groups are increas-
ingly used in software development but face particular
challenges to their eVective work. To develop insights into
the issues faced in distributed development, we examine an
extreme version, namely the development of free/libre open

source software1 (FLOSS). FLOSS is a broad term used to
embrace software developed and released under an “open
source” license allowing inspection, modiWcation and redis-
tribution of the software’s source without charge (“free as
in beer”). Much though not all of this software is also “free
software”, meaning that derivative works must be made
available under the same unrestrictive license terms (“free
as in speech”, thus “libre”). Characterized by a globally dis-
tributed developer force and a rapid and reliable software
development process, eVective FLOSS development teams

* Corresponding author. Tel.: +1 315 443 1676; fax: +1 866 265 7407.
E-mail addresses: crowston@syr.edu (K. Crowston), qli03@syr.edu (Q.

Li), kwei@syr.edu (K. Wei), uyeserye@syr.edu (U.Y. Eseryel), jhowison
@syr.edu (J. Howison).

1 The free software movement and the open source movement are dis-
tinct and have diVerent philosophies but mostly common practices. The li-
censes they use allow users to obtain and distribute the software’s original
source code, to redistribute the software, and to publish modiWed versions
as source code and in executable form. While the open source movement
views these freedoms pragmatically (as a development methodology), the
Free Software movement regards them as human rights, a meaning cap-
tured by the French/Spanish word ‘libre’ and by the saying “think of free
speech, not free beer”. (See http://www.gnu.org/philosophy/and http://
opensource.org for more details.) This paper focuses on the development
practices of these teams, which are largely shared across both movements.
However, in recognition of diVerences between these two communities, we
use the acronym FLOSS, standing for Free/Libre and Open Source Soft-
ware, rather than the more common OSS.



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 565

somehow proWt from the advantages and overcome the dis-
advantages of distributed work [2], making their practices
potentially of great interest to mainstream software devel-
opment.

This paper makes the following contributions. First, it
provides empirical evidence about management practices of
FLOSS teams. SpeciWcally, we identify how FLOSS teams
self-organize their work (focusing in particular on practices
for assigning work), how these practices diVer from those of
conventional software development and thus suggest what
might be learned from FLOSS and applied in other set-
tings. Second, the paper provides an example of the appli-
cation of qualitative research methods, speciWcally
inductive content analysis, to software engineering
research.

The paper continues in Wve sections. We Wrst brieXy
review literature on distributed software development and
on FLOSS in particular to identify what is known or
believed about FLOSS development practices, in order to
motivate our research question. We then discuss our quali-
tative case-based research method, followed by the Wndings
from our analysis. After discussing the implications of our
Wndings, we conclude by considering implications for soft-
ware engineering in general and possibilities for future
research.

2. The challenges of distributed software development

Though distributed work has a long history (e.g., [45]),
advances in information and communication technologies
have been crucial enablers for recent developments of this
organizational form [1]. Distributed teams seem particu-
larly attractive for software development because the soft-
ware source code and other artifacts can be shared via the
same systems used to support team interactions [44,50].
While distributed teams have many potential beneWts, dis-
tributed workers face many real challenges. Watson-Man-
heim et al. [57] argue that distributed work is characterized
by numerous discontinuities: a lack of coherence in some
aspects of the work setting (e.g., organizational member-
ship, business function, task, language or culture) that hin-
ders members in making sense of the task and of
communications from others [55], or that produces unin-
tended information Wltering [20] or misunderstandings [3].
These interpretative diYculties in turn make it hard for
team members to develop shared mental models of the
developing project [18,22]. A lack of common knowledge
about the status, authority and competencies of team par-
ticipants can be an obstacle to the development of team
norms [4] and conventions [38], which are necessary for the
smooth coordination of the team’s work.

The presence of discontinuities seems likely to be partic-
ularly problematic for software developers [55]. Numerous
studies of the social aspects of software development teams
[17,30,49,55,56] conclude that large system development
requires knowledge from many domains, which is thinly
spread among diVerent developers [17]. As a result, large

projects require a high degree of knowledge integration and
the coordinated eVorts of multiple developers [9]. More
eVort is required for interaction when participants are dis-
tant and unfamiliar with each other’s work [19,46,52]. The
additional eVort required for distributed work often trans-
lates into delays in software release compared to traditional
face-to-face teams [28,42] and may ultimately result in an
ineVective team [5,10,31,34]. The problems facing distrib-
uted software development teams are reXected in Conway’s
law, which states that the structure of a product mirrors the
structure of the organization that creates it. Accordingly,
splitting software development across a distributed team
will make it hard to achieve an integrated product [27].

2.1. FLOSS development as distributed software engineering

While the literature reviewed above highlights the diY-
culties involved in distributed software development, the
case of FLOSS development provides a striking counter-
example. There are thousands of successful FLOSS pro-
jects, spanning a wide range of applications, most devel-
oped by distributed teams. Due to their size, success and
inXuence, the Linux operating system and the Apache Web
Server and related projects are the most well known, but
hundreds of others are in widespread use, including projects
on Internet infrastructure (e.g., sendmail, bind), user appli-
cations (e.g., Mozilla, OpenOYce) and programming lan-
guages (e.g., Perl, Python, gcc). Many are popular (indeed,
some dominate their market segment) and the code has
been found to be generally of good quality [53]. The success
of these projects in managing distributed development
raises the question of what can be learned from this setting
and applied to software development and distributed work
more generally.

As well, FLOSS development is an important phenom-
ena deserving of study for itself. FLOSS is an increasingly
important commercial phenomenon involving all kinds of
software development Wrms, large, small and startup. Mil-
lions of users depend on systems such as Linux and the
Internet (heavily dependent on FLOSS tools), but as Scac-
chi [51] notes, “little is known about how people in these
communities coordinate software development across
diVerent settings, or about what software processes, work
practices, and organizational contexts are necessary to their
success”. As well, understanding FLOSS development
teams is important as they are potentially training grounds
for future software developers.

The nascent research literature on FLOSS has addressed
a variety of questions. First, researchers have examined the
implications of FLOSS from economic and policy perspec-
tives. For example, some authors have examined the impli-
cations of free software for commercial software companies
or the implications of intellectual property laws for FLOSS
[21,33,35]. Second, various explanations have been pro-
posed for the decision by individuals to contribute to pro-
jects without pay [6,23,25,29,39]. These authors have
mentioned factors such as personal interest, ideological



566 K. Crowston et al. / Information and Software Technology 49 (2007) 564–575

commitment, development of skills [36] or enhancement of
reputation [39]. Finally, a few authors have investigated the
processes of FLOSS development (e.g., [47,54]), which is the
focus of our study.

Raymond’s [47] bazaar metaphor is perhaps the most
well-known model of the FLOSS process. As with mer-
chants in a bazaar, FLOSS developers are said to autono-
mously decide how and when to contribute to project
development. By contrast, traditional software develop-
ment is likened to building a cathedral, progressing slowly
under the control of a master architect. While popular, the
bazaar metaphor has been broadly criticized. According to
its detractors, the bazaar metaphor disregards important
aspects of FLOSS development processes, such as the
importance of project leader control, the existence of de-
facto hierarchies and emergent leadership, the danger of
information overload and burnout, and the possibility of
conXicts that cause a loss of interest in a project or forking
[7,8].

In this paper, we examine the practices of FLOSS pro-
jects in more detail to provide a richer picture of how these
teams accomplish software development. The archetypical
community-based FLOSS development process2 diVers
from proprietary development in several respects that aVect
or depend on the approach used for managing the project.
A primary diVerence is that the community-based develop-
ment process is not owned by a single organization. Devel-
opers contribute from around the world, meet face-to-face
infrequently if at all, and coordinate their activity primarily
by means of computer-mediated communications (CMC)
[47,58] and other software development tools (e.g., source
code control systems).

What is perhaps most surprising about the FLOSS pro-
cess is that it appears to eschew traditional project coordina-
tion mechanisms such as formal planning, system-level
design, schedules, and deWned development processes [27].
Many teams are largely self-organizing, without formally
appointed leaders or indications of rank or role, raising the
question of how the work of these teams is managed. In
addition, non-member involvement plays an important role
in the success of the teams. Generally, a small core group
oversee the overall design and contribute the bulk of the
code, but other developers play an important role by con-
tributing bug Wxes, new features or documentation, by pro-
viding support for new users and Wlling other roles in the
teams. Core group membership can bestow some rights,
including deciding what features should be integrated in the
release of the software, when and how to empower other
code maintainers, or to “pass the baton” to the next volun-
teer [48]. However, in comparison to traditional organiza-
tions, more people can share power and be involved in
group activities. In most projects, anyone with enough inter-

est and skill can access the code, contribute patches, make
suggestions to group, and attend important decision pro-
cesses. Users who are non-members or peripheral members
become a crucial resource of potential recruitment [26]. How
to handle the relationship between non-members’ require-
ments and the project goal is thus a signiWcant challenge.

These features make FLOSS teams extreme examples of
self-organizing distributed teams, but they are not inconsis-
tent with what many organizations are facing in recruiting
and motivating professionals and in developing distributed
teams. As Peter Drucker put it, “increasingly employees are
going to be volunteers, because a knowledge worker has
mobility and can go pretty much every place, and knows
itƒ Businesses will have to learn to treat knowledge work-
ers as volunteers” [11]. These characteristics of self-organi-
zation and volunteerism make FLOSS teams particularly
interesting sites for studying the social side of software
engineering practices.

2.2. Research question

The research reviewed above suggests that distributed
teams should face signiWcant problems in developing coher-
ent software, but that self-organizing FLOSS teams have
had some success in doing so. As well, the literature on
FLOSS development in particular suggests that many of
these teams adopt a very diVerent approach to organizing
the contributions of team members. Therefore, in order to
shed more light on these practices and how they address the
challenges of distributed development, we address the
research question:

What is the process by which speciWc developers come to
work on parts of the project development, such as par-
ticular patches or bug Wxes?

Assignment of tasks is only one aspect of self-organiza-
tion, but it is a practice that encapsulates a range of other
practices, such as prioritization and scheduling of work and
that highlights diVerences between FLOSS and proprietary
software development.

Our empirical work, described next, addresses one side
of the intended comparison. For the other side, we draw on
published descriptions of task assignment in proprietary
software development. SpeciWcally, in the bug Wxing process
described by Crowston [12], developers are assigned to
work on particular modules of code, meaning that bugs in
those modules must be routed to that engineer to work on.
In order to assign tasks then, customers give problem
reports to the service centre, which in turn assigns the prob-
lems to product engineers, who then assign them to soft-
ware engineers. In addition, software engineers may assign
reports or subtasks to each other. Specialization allows
developers to develop expertise in a few modules, which is
particularly important when the engineers are also develop-
ing new versions of the system, and allows a single person
to manage all changes to particular modules, thus minimiz-
ing the cost of integrating changes. However, the cost of

2 In focusing on community-based development, we exclude projects
such as MySQL that are developed by a single organization following a
conventional software engineering approach and only released under a
FLOSS license.



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 567

such a system is the need for an elaborate process for
assigning tasks to the appropriate developer. In the remain-
der of this paper, we examine the nature of the correspond-
ing task assignment process for FLOSS development.

3. Methods: inductive coding of FLOSS developer email 
interactions

In this section we describe the approach we adopted to
analyze task assignment in FLOSS software development
processes. Because the task assignment mechanisms used by
these teams had not yet been described, we adopted an
inductive multiple case study approach to the research.
Rather than starting with hypotheses to be supported or
reject, this approach involves developing new theory to
address our research question by carefully analyzing real
FLOSS developers’ interactions for evidence of the task
assignment mechanisms in use. An inductive approach was
indicated by our desire to extend theory for this new phe-
nomenon. The rationale for the use of a case study
approach was that case studies provide rich empirical data
from a real setting, necessary for theory generation. In par-
ticular, Yin [61] notes that case studies are particularly
appropriate for answering “how” or “why” questions
about current events in situations where the researcher has
no control over the circumstances of the study.

3.1. Sample selection

Because the process of manually reading, rereading, cod-
ing and recoding messages is extremely labor-intensive, we
had to focus our attention on a small number of projects.
(Overcoming this limitation on the number of projects
examined is a subject of future research, as discussed
below.) A theoretical sampling strategy was employed in
this study, meaning that we selected case sites based on
their expected contributions to theory development rather
than for representativeness (a criterion that would have
been appropriate for theory testing). We adopted several
criteria for choosing projects. First, the data from these
projects that we needed for analysis had to be publicly
available (ruling out projects that limit access to their email
lists or trackers). Second, we chose the projects that had
more than 7 members, because small projects are less likely
to assign tasks in an observable way or to have signiWcant
task assignment problems. Third and most important, we
wanted to study projects that seem to be relatively success-
ful at managing the contributions of multiple developers
(the core developers plus many more peripheral contribu-

tors), thus providing relevant data for insight into task
assignment mechanisms for FLOSS development. We
assessed success according to the criteria suggested by
Crowston et al. [14,15], looking for projects that have
attracted numerous developers beyond the initial project
founders, are continuing to release software, have numer-
ous downloads and have an active user community that
provides feedback.

Based on these criteria, 3 FLOSS projects were selected for
analysis, namely Gaim, eGroupWare and Compiere ERP.

• Gaim is an instant messenger application that supports
multiple platforms and protocols (http://sourceforge.net/
projects/Gaim/).

• eGroupWare is a multi-user, web-based groupware suite
with modules such as email, address book, calendar, con-
tent management, forum, wiki and so on (http://source-
forge.net/projects/eGroupWare/).

• Compiere is an ERP+CRM solution for Small-Medium
Enterprises covering areas such as order and customer/
supplier management, supply chain and accounting
(http://sourceforge.net/projects/compiere/ and http://www.
compiere.org/).

The development status of the three projects is shown in
Table 1. Note that all three projects are hosted on the
SourceForge system (http://sourceforge.net/), which con-
trols for diVerences attributable to accessibility or choice of
development tools.

Despite similarities in status, these projects diVer in ways
that allow for some interesting comparisons. Gaim is an end-
user desktop application written in C, while eGroupWare in
a web-based server application written in an interpreted lan-
guage, PHP. As a result, we expect Gaim mostly to be used as
is, but expect eGroupWare to have a lower barrier to entry
for developers and to be more often customized, potentially
increasing problems in integrating these contributions. Com-
piere was originally a commercially developed product that
later moved to Open Source development. Its history allows
us to examine issues that arise as a new set of developers
began working with an established code base and developer
community. As well, one of the authors had extensive experi-
ence with proprietary ERP systems, providing a further basis
for comparison.

3.2. Data

The primary data used for our study were interactions
on the main developer communication forum, either a

Table 1
Projects selected for analysis

EGroupWare Gaim Compiere

Development status Production/stable Production/stable Production/stable
Programming language PHP C Java
License GNU General Public License (GPL) GNU General Public License (GPL) Mozilla Public License 1.1 (MPL)
Developers count 42 12 44



568 K. Crowston et al. / Information and Software Technology 49 (2007) 564–575

developer mailing list or web-based discussion forum. We
chose these interactions because they contain the communi-
cations between developers used to coordinate project
development. It is possible that developers occasionally
communicate among themselves in private (e.g., via per-
sonal email or phone calls), which would not be captured in
this data source. Such interactions would also be invisible
to other developers on the mailing list. However, we do not
see evidence to suggest that such interactions are common
and indeed, most FLOSS teams have a norm that impor-
tant discussions should be accessible to all members, which
is why we have chosen to base our analysis on these public
interactions.

To increase the comparability of our analyses of each
project, we examined messages from a similar period in the
project development lifecycle. We expected that manage-
ment-related activities would occur more frequently around
(and especially before) a major release, so we analyzed the
period leading up to and immediately after the Wrst open
source release for each project. SpeciWcally:

• For Gaim, we selected messages posted to the “Gaim-
devel” mailing list during August and September 2004
for analysis (Gaim 1.0.0 was released on 16 September
2004). The total number of messages was 710, posted by
85 individuals (11 were identiWed as developers accord-
ing to the current developer list for Gaim, and 1 was
identiWed as a former developer).

• For eGroupWare, we selected messages posted to the
“eGroupWare-development” mailing list during Octo-
ber and November 2004 for analysis (version 1.0.00.006
of eGroupWare was released on 18 November 2004),
which resulted in 665 messages total posted by 151 indi-
viduals (20 were identiWed as developers according to the
current developer list).

• For Compiere, we selected messages posted to the Devel-
opment Chat Forum from the January 1, 2001 to
November 20, 2002, which covers the period up to and
following the 5 September 2002 release of the Compiere
Version 2.4.3a, the Wrst version released after the move to
SourceForge. Perhaps because this was a project transi-
tioning from in-house development, the initial traYc on
the developers’ forum was sparse and we had to draw
from a longer time period than with the other projects to
gather the 315 messages we examined. The Compiere
project had more deWned roles: there were postings from
57 users, from 2 project managers, from 3 advisor/men-
tor/consultants, from 6 developers and from 3 transla-
tors.

We also used the list of developers that appears on the
project’s home page to determine the status of message
posters. However, the dates of the messages do not exactly
match the collection date of the list of developers. Because
the list of developers can change over time, it is complicated
to tell in a retrospective analysis exactly what an individ-
ual’s status was at the time a message was posted. We do

not believe that changes in the developer lists substantially
aVect our conclusions, but we plan to develop time-
stamped lists of developers for future research.

As mentioned above, all three projects are hosted on
SourceForge, making data about them easily accessible for
analysis. However, analysis of these data poses some ethical
concerns that we had to address in gaining human subjects
approval for our study. On the one hand, the interactions
recorded are all public and developers have no expectations
of privacy for their statements (indeed the expectation is
the opposite, that their comments will be widely broadcast).
Consent is generally not required for studies of public
behavior. On the other hand, the data were not made avail-
able for research purposes but rather to support the work
of the teams. We have gone ahead with our research after
concluding that our analysis does not pose any likelihood
of additional harm to the poster above the availability of
the post to the group and in the archive available on the
Internet. Nevertheless, we have followed the common prac-
tice of rendering data anonymous by using pseudonyms for
developer names in publication though we have retained
the actual project names.

3.3. Analysis

For this project, we used a form of content analysis to
analyze the developer email interactions to identify the task
assignment mechanisms used in the process. Content analy-
sis is a qualitative research technique for Wnding evidence
of concepts of interest using text as raw data rather than
numbers [43]. As mentioned above, our texts are email
interactions, i.e., what people said to others to get their
work done in a naturalistic setting [59]. The goal of our
analysis is to infer facts about the task assignment process
followed from features of the texts produced in the course
of performing the process.

It is commonly assumed that qualitative work is inter-
pretivist (i.e., concerned with understanding individuals’
understandings of their social worlds), but in fact qualita-
tive research can adopt any research perspective: positivist,
interpretivist or critical [43]. In this study, we are interested
in how task assignment works in the teams studied and
assume that the nature of the process is accurately reXected
in the texts participants produce, making our approach
essentially positivist. This analysis approach has advanta-
ges in that it does not require the active participation of the
individuals being studied, which can be diYcult to obtain if
they are busy or no longer available, nor does it rely on par-
ticipants’ possibly fallible recollections or impressions of
the process. On the other hand, the understanding we
develop by analyzing the process from an external (or
“etic”) perspective may not be the same as the understand-
ing participants have themselves (an “emic” perspective).
By contrast, it is typical for interpretivist or critical analysis
to augment observational data with interviews to develop
“rich descriptions” of the setting, and we discuss in the dis-
cussion section some possible extensions to our work using



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 569

such data. Such an analysis would aim at uncovering hid-
den meanings in the texts rather than evidence of pre-speci-
Wed concepts.

The process of identifying and labelling the signiWcant
features in the text is referred to as coding and the result of
process is a text annotated with codes for the concepts
exhibited [41]. A codebook documents the coding process
by describing the characteristics of the text that count as
evidence for each concept of interest. A codebook might
also include deWnitions or references for the concepts repre-
sented and positive and negative examples of text that is
evidence for a code, although it has to be admitted that
much of the knowledge that guides coding is held tacitly by
the coders. A key concern in developing a codebook is its
reliability, i.e., do diVerent coders working with the same
text identify the same set of codes, as measured by the
degree of inter-rater agreement. If coders do not agree, then
it is typical to have them discuss the coding until they reach
a higher level of shared understanding of the code and to
update the codebook accordingly. The coded text can then
be subject to further analysis, such as examination of the
relationship between codes or quantitative analysis of their
occurrence.

Finally, analysis can be deductive or inductive or most
often, a mix. A deductive approach is based on a theoretical
framework that identiWes concepts of interest for the code-
book. Such an approach would be appropriate when the
goal of the analysis is to test the theory. A pure inductive
approach starts with a research problem and data, and
induces relevant concepts from them, setting aside any pre-
existing concepts [24]. Such an approach is appropriate
when the goal is developing novel theory for some setting.
A mixed mode analysis starts with some ideas about the rel-
evant concepts from theory, but allows these to evolve
through the analysis based on experiences with data. We
chose the Wnal approach because we did have some ideas
about how coordination worked based on the literature
reviewed above, but acknowledged that our understanding
was as yet incomplete, particularly as it related to this set-
ting. Our research is therefore theory building rather than
theory testing, since our goal is further development of the
theory.

To carry out the analysis, we coded each instance of task
assignment identiWed in the email transcripts on three
dimensions: who assigned the task, to whom, and how. For
the Wrst two dimensions, we identiWed two main types of
actors in FLOSS projects from our literature review: devel-
opers, which we deWned by the list of developer named on
the project’s SourceForge page, and users, all those whose
names were not listed. Tasks can thus be assigned in four
directions: from developer to developer, from user to user,
from developer to user and from user to developer.

To address how tasks are assigned, three coders indepen-
dently went though the data and identiWed all the behaviors
related to task assignment. We started by developing a cod-
ing scheme based on prior work on coordination modelling
[16], which provided a template of expected activities

needed for task assignment. SpeciWcally, we looked for evi-
dence of actions taken to identify a task that need to be per-
formed, identiWcation of which individuals could perform
the task, selection of a particular individual and some kind
of assignment of the task to the individual. For the Wrst, we
looked for statement of intention to undertake or perform
a task, rather than a status or process report. For example,
if someone said “I’d like to do it”, we considered
this statement part of a task assignment. But if he or she
said “I did it” or “I have already committed
the code successfully”, then we did not consider
this statement as a task assignment. In our qualitative anal-
ysis, we observed many messages beginning with “I have
already done it”, or “I spent three days
working on this bug and solved it Wnally”,
even though no previous postings could be found to discuss
how or to whom the task was assigned. We did not code
such statements because these status/process reports show
who did a task, but do not indicate anything about the
prior steps in task assignment, such as who identiWed or
assigned the task or how it was assigned.

The coding system evolved through discussion of the
applicability of codes to particular examples, both in group
meetings and as three coders worked on the same set of
messages over the course of several months. The Wnal cod-
ing scheme is shown in Table 2. All messages were double-
coded to allow computation of inter-rater reliability. The
level of inter-rater agreement for coding the Compiere,
eGroupWare and Gaim projects were 0.893, 0.887 and
0.810, respectively, all above the usual rule-of-thumb
acceptable level of 0.80.

4. Results

In this section, we discuss the results of our analysis. We
discuss Wrst the use of diVerent kinds of task assignment,
then consider who does the assignment and to whom. For
the Wrst, the frequencies of the Wve task assignment mecha-
nisms in the three projects are shown in Table 3.

4.1. Use of diVerent kinds of task assignment mechanisms

4.1.1. Self-assignment
Our Wrst Wnding conWrms a striking feature of FLOSS

development practices, which is how often developers intro-
duce a task and simultaneously oVer to work on it, in eVect
assigning the task to themselves. As Table 3 shows, for all
three projects, self-assignment is the most frequent form of
assignment (code SA). The following is an example of a
poster on the eGroupWare mailing list self-assigning a task:

Thanx for the wonderfull helpƒMaybe an
idea to make a ‘hello world’ package for
on the websiteƒthis kind of standard
appƒwould be very Helpful for starting
eGW developers (like me ;-)) If you’d
like, I’ll make the package.



570 K. Crowston et al. / Information and Software Technology 49 (2007) 564–575

The volunteering may be coupled with an inquiry about
the usability of product. This example came from the Com-
piere project for example:

I want to extend and to create new
reports of Compiere, I know that you
have thought to replace to Style Report
by API Java 1.4. Which is your plan to
implement API Pringing?

In a few cases, the oVer to help is not connected to a par-
ticular task, but rather to claim responsibility for a general
class of problems or just to announce availability, as in
these two quotations:

Hi, developers, If you Wnd any PHP5
related problems, please open a bug
report and assign it to me.

Well I just started 14 days of vecation
in front of the telly and computer. So I
guess I will do some coding these
days.D)

Due to the nature of voluntary participation, condi-
tional volunteering behaviors are frequently observed in all
three projects. Unlike in most proprietary software devel-
opment, volunteers in FLOSS projects take on the work on
their own time. For example, it is common to see “I
would like to work on it, if I get time”.
And the volunteers are not required to be an expert, or even

familiar with the task they want to take on. Volunteering
combined with asking for help is frequently seen in our pro-
jects, as shown in these two examples:

I’d willing to do this, but really need
some assistance upfront before I could
make a contribution. I was wondering if
someone here might be willing to help me.

Can someone give me instructions to
translate, so I can work on that?

4.1.2. Assigning tasks to others
As well as volunteering, developers often propose tasks

and ask for volunteers, explicitly or implicitly. We distin-
guished three targets for the request: a speciWc named pro-
ject member, an unnamed individual (i.e., asking for
someone to volunteer) and a non-member. For eGroup-
Ware and Compiere, asking a certain person (code ACP)
was the second most frequent mode of task assignment, fol-
lowed by asking an unspeciWed person (code AUP). For
Gaim, ask an unspeciWed person is the second most fre-
quent mode of task assignment, followed by asking a cer-
tain person. For example:

Can someone please do a brief test,
replacing conWg.php with newconWg.php?
If it works for a few people without
causing problems, it will help us in the
long run.

Table 2
Coding scheme for task assignment mechanism

Name Code Description Example

Relationship of 
task assignment

DD Developer assigns task to developer

DU Developer assigns task to user
UD User assigns task to developer
UU User assigns task to user

Task assignment 
mechanism

SA Assigning tasks to self I’d like to work on this part

If you’d like, I’ll make the package
ACP Assigning tasks to a speciWc person Luke, could you check this bug?
AUP Assigning tasks to an unspeciWed person Can someone please do a brief test, 

replacing conWg.php with newconWg.php?
AO Assigning task to a person who is neither 

a developer or user
I’ll ask one of my friends if he can come up with 
quality sounds as well

SCO Suggest consulting with a certain person 
to do the task

You’d better ask Jorg and work with him to solve it

Table 3
Frequency of destinations of task assignment by project

Task assignment mechanisms Code Frequency

EGW (%) Gaim (%) Compiere (%)

Self-assignment SA 37(52.9) 60 (59.4) 16 (57.1)
Assign to a speciWed person ACP 15(21.4) 18 (17.8) 9 (32.1)
Assign to an unspeciWed person AUP 12(17.1) 22 (21.8) 1 (3.6)
Ask an outsider (a person not in the project development team) AO 0 1 (1.0) 0
Suggest consulting with others SCO 6 (8.6) 0 2 (7.2)
Total of task assignment messages 70 (100) 101 (100) 28 (100)



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 571

Sometimes people do not directly ask others to do a
task, but discuss who can do among several candidates. For
example:

Miguel our translation coordinator or I
will get the translation via your link
and will commit them/include them in the
distribution. Ronald

Amir: are you going to commit the trans-
lations and add Thai to setup/lang/lan-
guages.php to enable Thai or should I
take care of that?

Sometimes asking for volunteers is coupled with volun-
teering, as in these two quotations:

Our own project repository would require
maintenance, bandwidth, and drive space.
I’ve volunteered to do everything to get
us started. Volunteers to help maintain
would be appreciated.

I’m currently working through a port of
my Bugzilla data into TTS, so feel free
to ask me for any more tips, sugges-
tions, etc. I’m happy to help, as I’m
going through the process myself!

Strikingly, we observed almost no cases of someone ask-
ing a non-team member to work on some part of the pro-
ject (code AO). The absence of this mode of assignment
reXects that the fact that members of the projects have no
basis for authority over non-members and therefore can
not assign tasks, even on a voluntary basis.

4.1.3. Consult with others
Our Wnal observation about modes of task assignment is

that sometimes team members are suggested to consult with
others before they do a certain task (code SCO), especially
for eGroupWare. For example:

I only ask you to consult with the main-
tainer of the concerned app before you
commit something. If you need to change

something radical in the API please talk
it through Lars or me before (e.g., Mail
it as proposal to the developers list).

Sorry for that. Have you talked to Bill
about the patches? I can’t image he’s
not willing to accept them.

4.2. Who does the assignment and to whom

We next examine who does the assignment and to whom.
Since self-assignment depends on the ability of an individ-
ual to contribute to the group, we investigated diVerences
between developers and users in the type of assignment
used, as shown in Table 4. As noted above, the status of
user or developer was assigned by comparing the poster of
the message to the project’s published list of developers.

The table shows that for all three teams, users almost
never assign work to other users, but still often self-assign
tasks. Especially, for Gaim the percentage of users doing
self-assignment is very high and some users oVer to contrib-
ute several times. For example, one user in eGroupWare
committed himself to helping implement features:

I am willing to help implement this fea-
ture, and have sometime free-time:-) to
give away, so I started looking through
the code.

In contrast to the separation of roles in the proprietary
process, many users who post to the developer email list
prefer to solve the problem by themselves when they iden-
tify a task, instead of reporting it directly and just waiting
for the responses. In other words, the formal division of
users and developers does not necessarily constrain their
behaviors.

Though the previous tables show many similarities
among three cases, some interesting diVerences in task
assignment mechanisms were found through in-depth qual-
itative analysis. Most of them are closely related to the
nature of products and characteristics of projects. For
example, unlike Gaim and eGroupWare, Compiere was
originally a commercially initiated project. As well, its

Table 4
Comparison of destination of task assignment by developers and users

Note. Codes for columns are combined with the codes for the rows to form a complete code; e.g., xD + Dx yields code DD.

Task assignment mechanism Code EGW Gaim Compiere

Developers (%) Users (%) Developers (%) Users (%) Developers (%) Users (%)

Dx Ux Dx Ux Dx Ux

Self-assignment SA 25(51.0) 12(57.1) 28(51.9) 32(68.1) 8(44.4) 8(80.0)
Assign to a speciWed developer ACP-xD 1(2.05) 2(9.5) 3(5.6) 5(10.6) 3(16.7) 1(10.0)
Assign to a speciWed user ACP-xU 12(24.5) 0 8(14.8) 2(4.3) 5(27.7) 0
Assign to an unspeciWed person AUP 7(14.3) 5(23.8) 15(27.7) 7 (14.9) 0 1(10.0)
Ask an outsider AO 0 0 0 1(2.1) 0 0
Suggest consulting with other developer SCO-xD 3 (6.1) 2 (9.5) 0 0 0 0
Suggest consulting with another user SCO-xU 1 (2.05) 0 0 0 1(5.6) 0
Suggest consulting with outsider SCO 0 0 0 0 1(5.6) 0
Total of task assignment messages 49(100) 21(100) 54(100) 47(100) 18(100) 10(100)



572 K. Crowston et al. / Information and Software Technology 49 (2007) 564–575

target users are Small to Medium Enterprises. Compared to
the other projects, self-assignment looks more like the
result of group decision-making in Compiere. Both devel-
opers and users tend to use “We” instead of “I” most of the
time, such as:

We will give it try and hope that you
will contribute or help us during the
coding process.

In addition, the percentage of conditional task assign-
ment is much higher in Compiere than the other two, which
we attribute to the complexity and size of code, and the fact
at the time of our analysis, new volunteers were just begin-
ning to work with what had been a proprietary code base.
More than half of volunteering work asks for help before
committing to contribute. On the other hand, these kinds of
messages were rarely founded in self-assignment activities
in eGroupWare, because it has a lower barrier to newcom-
ers as we expected. Furthermore, the coupling of asking for
volunteers and volunteering is also more frequently used in
Compiere than Gaim and eGroupWare. Most of the
requirements from business customers are relatively com-
plex and hard for one individual to implement. As a result,
developers tend to post tasks publicly, commit to do it and
try to attract more volunteers.

5. Discussion

The most striking diVerence we noted between FLOSS
and proprietary software development is that community-
based FLOSS development does in fact seem to rely less on
explicit assignments of work, as has been suggested in the lit-
erature on FLOSS development. We did not observe evi-
dence of a “hierarchy” in assigning tasks in FLOSS, by
which we mean that individuals do not command or direct
others to work on a task as might a project manager or
employer. Instead, they use phrases such as, “would you
please”, “if you have time, can youƒ” or even
discuss how to assign a task instead of simply assigning it
directly. Even assignment to a speciWc person is qualiWed:
“If you’re interested you canƒ” or “feel
free to Wgure out why and Wx it if you
like”. Users assigning work to developers use similar
phrases, such as “I really want Mary to look at
it Wrst” or “Larry, can you take care of this
bug?” Similar diVerences have been noted in the Linux pro-
cess, which also relies on developers assigning themselves to
tasks rather than being explicitly assigned [13].

On the other hand, the data show that it is developers
who do the majority of task assignments, particularly when
self-assignments are removed. As well, users almost never
ask other users to work on a task, while developers often do
(between 15% and 25% of the developer assignments are to
users). These data suggest the presence of a status hierar-
chy, with developers able to ask users to do something (and
occasionally vice versa), but users not empowered to ask
other users.

Overall, the FLOSS task assignment process seems simi-
lar to the market approach to task assignment suggested by
Crowston [12]. In a market form of task assignment, a
description of each task is sent to all available agents. Each
evaluates the task and, if interested in working on it, sub-
mits a bid, saying how long it would take, how much it
would cost or even what they would charge to do it. The
task is then assigned to the best bidder, thus using informa-
tion supplied by the agents themselves as the basis for pick-
ing who should work on the task. This interpretation is
supported by the observation that 50–60% of all observed
assignments are self-assignments. However, the FLOSS
process diVers in that there is often no separation of the
identiWcation of task and its assignment, nor is there always
an explicit, or authoritative, assignment of the task.

The use of a market-like task assignment mechanism in
the FLOSS process is consistent with predictions of the
eVect of the more extensive use of information and commu-
nication technologies (ICT). ICT makes it easier to gather
information about available tasks and resources and to dis-
tribute the decision about which resources to use for a par-
ticular task. At a macro level, Malone et al. [37] suggest that
decreased coordination costs favor more extensive use of
markets, which usually have lower costs but require more
coordination activities, over vertical integration, which
makes the opposite trade-oV. In contrast, for the propri-
etary process, the choice is often made by a project man-
ager based on the specializations of the individual
developers [12].

Second, we observed broader participation in the work
on tasks. Due to the openness of the FLOSS teams, active
users can take on development tasks rather than the pro-
cess being restricted to the oYcial development team.
Indeed, for all three teams, the most common form of task
assignment was self-assignment, that is, volunteering to
work on a particular task among both developers and
users. These active users do not wait to be given something
to do, but rather step forward to work on tasks that catch
their interest. One likely explanation for this diVerence is
that FLOSS development teams are substantially com-
posed of volunteers. As a result, task assignment in FLOSS
needs to be based primarily on personal interest.

As well, self-assignment appears to play an important
role in bolstering the legitimacy of the action suggested by
the poster, making it more likely that the group will consent
to the poster’s preferences. Legitimacy is the right of a par-
ticipant to be heard and respected in a forum and a source
of inXuence on that forum’s decisions. Formal groups with
pre-deWned memberships assess legitimacy up-front, before
admitting members. In proprietary software development
the right to make suggestions for features is often reserved
for the speciWcation writers or customer facing “marketing
engineers”. On the other hand, for informal groups seeking
new contributors it is not possible, nor desirable, to make
such pre-qualiWcations. The prevalence of self-assignment
supports the anecdotal suggestion that in FLOSS projects
in general, legitimacy is linked to action, the value that



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 573

“code speaks louder than words”. After all, if someone is
willing to use their own time to implement a feature or Wx a
bug (or even better, if they have actually already done so) it
is more diYcult for other members of the team to deny
them that opportunity.

Of course, reliance on this kind of assignment does have
several drawbacks. First, anyone can choose to contribute
to the project, even if they are not good at it or have no rel-
evant experience. As a result, the quality of team member
output often needs further investigation by developers and
other users. In some projects, developers chose to forego
these contributions rather than to spend the time evaluat-
ing the output. Second, because multiple developers may be
working on the same parts of the project, projects must
develop code management practices that allow multiple
changes to be integrated. Many projects rely on code man-
agement systems such as CVS, and the design of these tools
has become a pressing topic in FLOSS discussions (see the
recent discussion of source code control tools for Linux
summarized at http://en.wikipedia.org/wiki/BitKeeper). We
did observe some interesting behaviors to avoid duplication
before volunteering to do a task, such as the following:

can I can dibs on this? I don’t want to
have any of your work duplicated, so I
want to make sure that I don’t infringe
on what someone is already working on.

The use of self-assignment may be an emergent phenom-
enon in the teams, consistent with a characterization of the
teams as self-organizing. For example, the quotation above
begins with the poster’s disclaimer, “I don’t know how
assignments work, but can I can [sic] dibs
on this?” In the absence of guidelines or rules, self-
assignment may emerge to Wll the need for a coordination
mechanism to manage this part of the collaboration.

Finally, proprietary task assignment and resource plan-
ning relies on the participants being reliable; the employ-
ment relationship, with its clear penalties for non-
performance gives managers a reliable expectation that the
work assigned will be carried out. By contrast, it has been
suggested that FLOSS participants are relatively unreliable
[40]. The data in this study provide some support for this
idea, though we did not directly measure the motivations or
volunteer status of the participants so this cannot be fully
conWrmed. Much of the self-assignment is qualiWed with
phrases like “if I have time”, “if I get some
free time” or which cite ‘real world’ time constraints, “I
will submit this in a couple of day (have
to Wnish some professional work Wrstƒ :/)”.
This uncertainty can create problems in the usability of
output and timeliness of schedule. People Wnish their tasks
according to time and interest, which may aVect the eVec-
tiveness of the project. And because of uncertainty of code
ownership, and the distributed nature of the participants, it
is hard to track the status of developers’ work, especially
when it is self-assigned. These trade-oVs make sense in a
volunteer activity where the service of individuals is on

their own terms. However, these characteristics may also be
increasingly common in distributed software development,
characterized as it is by numerous discontinuities [57]. Dis-
continuities of place and time mean that the actions of
remote colleagues are not easily visible, potentially making
their contribution seem less reliable. As well, diVerent team
members may work for diVerent organizations (i.e., across
another discontinuity), again making them increasingly
similar to FLOSS teams. As a result, the approaches used
by FLOSS teams may be appropriate even in non-FLOSS
settings.

6. Conclusion

In this paper, we have shown how qualitative inductive
content analysis provide insights about the diVerences
between FLOSS and proprietary development and thus
suggests practices that might be useful for proprietary
development. Our results suggest several avenues for future
research. First, our results are based on just three projects.
Studies of other projects are needed to conWrm the pattern
of project management reported here and to identify fac-
tors aVecting the choice of approaches. For example, we
expect that task assignment in company-sponsored projects
works diVerently than in community-based projects. Fur-
ther studies could examine the role of project culture, lead-
ership or power. Our study has only scratched the surface
in this aspect. As well, we have observed that synchronous
chat media, such as IRC (Internet Relay Chat), can be
another important channel for project management,
including task assignment. Due to the unavailability of
archives, we were not able to use IRC as a data source in
this study, but this channel should be considered in future
work.

To increase the scope of data collection, we are currently
exploring the use of natural language processing techniques
to automate aspects of the data analysis process. Automatic
processing could certainly help by identifying various kinds
of meta-data, such as the senders of messages and their role
in the project. As well, an automated analysis might be able
to identify certain classes of messages, e.g., ones in which an
individual oVers to do something as an example of self-
assignment. These messages could be Xagged for further
consideration by a human coder, thus eliminating the need
to sort through all of the messages in a corpus. However,
for the foreseeable future a human coder will need to make
the Wnal judgements.

Future studies could also examine the link between pro-
ject management and other group processes. For example,
task assignment appears to play a role in the development
of shared mental models for the project teams, a key prob-
lem confronting software developers as noted above.
‘Assignment to unspeciWed person’ provides a discursive
and informal but continuous source of to-do items and the
desired future of the project, e.g., “I’d really appre-
ciate it if maybe someone could write the
list suggesting the use of ‘sound themes.”



574 K. Crowston et al. / Information and Software Technology 49 (2007) 564–575

or “I think it’d be cool if someone modiWed
the image”. Yamauchi et al. [60] identiWed the practice of
maintaining to-dos at various levels of speciWcity as a fea-
ture of FLOSS development. Similarly, ‘assignment to a
speciWc person’ also communicates the assigner’s under-
standing of the other participants’ skills and areas of
knowledge. “Sarah, can you please clarify for
me a few things about this design?” or “BTW,
have you talked with Alvin at all? I think
he has something like your global status
dropdown somewhat implemented too”, not only
creates a task for Sarah or the person asked the question,
but announces to the rest of the community that Sarah
probably knows something about that design and that
Alvin has experience with status dropdowns. In this way
practices that build shared mental models are embedded in
coordination mechanisms and as such do not require
explicit additional work for participants, minimizing the
eVort required to collaborate.

For managers of traditional software groups, perhaps
the most interesting result is use of volunteering as an
assignment mechanism. On their face, the concerns noted
above about the problems with voluntary assignment sug-
gest that the task assignment practices of FLOSS develop-
ers would be hard or undesirable to transfer to mainstream
software development. However these coordination mecha-
nisms may not be limited to volunteer projects only.
Knoor–Cetina identiWed similar ‘gentle management’ in the
High Energy Physics (HEP) experiments at CERN. She
writes of “a marked self-organization of the experiments
observed, a form of voluntarismƒ” and relates a coordina-
tor using a “gentle” approach in which he “hopefully” Wnds
volunteers (“somebody willing”), because they have a par-
ticular interest, something which happens “whenever new
tasks require attention” [32 p. 179]. She continues, “it is not
‘morale’ per se that is [the origin of self-organization or vol-
unteerism], but the discourse that expresses necessities and
interdependencies and allows for groups ‘freely’ (with a lit-
tle nudging on the part of conveners and spokespersons) to
respond to demands”. Self-assignment and “gentle” assign-
ment to others, then, is also found within mission-critical
work involving the spending of substantial Wnancial and
scientiWc resources. Another example of the use of these
techniques within a non-volunteer environment is the prac-
tice reported at Google where engineers are allowed one
day a week to work on whatever they want to work on (see
for example http://www.oreillynet.com/pub/a/network/
2005/03/16/etech_2.html). The innovations in the Google
Labs (labs.google.com) are said to be the result of these self-
assigned activities. There is scope for the emergent practices
identiWed in this study to be imaginatively applied in other
contexts.

Acknowledgements

This research was partially supported by NSF Grants
03-41475, 04-14468 and 05-27457. This paper has beneWted

from suggestions from Kathy Chudoba. An earlier version
of this paper appeared as:

Crowston, K., Wei, K., Li, Q., Eseryel, U.Y., & Howison,
J. (2005). Coordination of Free/Libre Open Source Software
development. Paper presented at the International Confer-
ence on Information Systems (ICIS 2005), Las Vegas, NV,
USA.

References

[1] M.K. Ahuja, K. Carley, D.F. Galletta, Individual performance in dis-
tributed design groups: an empirical study, presented at SIGCPR
Conference, San Francisco (1997).

[2] K. Alho, R. Sulonen, Supporting virtual software projects on the
Web, presented at Workshop on Coordinating Distributed Software
Development Projects, Seventh International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE
’98) (1998).

[3] D.J. Armstrong, P. Cole, Managing distance and diVerences in geo-
graphically distributed work groups, in: P. Hinds, S. Kiesler (Eds.),
Distributed Work, MIT Press, Cambridge, MA, 2002, pp. 167–186.

[4] D. Bandow, Geographically distributed work groups and IT: a case
study of working relationships and IS professionals, in: Proceedings
of the SIGCPR Conference, 1997, pp. 87–92.

[5] F. Bélanger, R. Collins, Distributed work arrangements: a research
framework, The Information Society 14 (1998) 137–152.

[6] J. Bessen, Open Source Software: free provision of complex public
goods, Research on Innovation (2002).

[7] N. Bezroukov, A second look at the cathedral and the bazaar, First
Monday 4 (1999).

[8] N. Bezroukov, Open source software development as a special type of
academic research (critique of vulgar raymondism), First Monday 4
(1999).

[9] F.P. Brooks Jr., The Mythical Man-month: Essays on Software Engi-
neering, Addison-Wesley, Reading, MA, 1975.

[10] E. Carmel, R. Agarwal, Tactical approaches for alleviating distance in
global software development, IEEE Software (2001) 22–29.

[11] J. Collins, P. Drucker, A conversation between Jim Collins and Peter
Drucker, in Drucker Foundation News 7 (1999) 4–5.

[12] K. Crowston, A coordination theory approach to organizational pro-
cess design, Organization Science 8 (1997) 157–175.

[13] K. Crowston, The bug Wxing process in proprietary and free/libre
open source software: a coordination theory analysis, in: V. Grover,
M.L. Markus (Eds.), Business Process Transformation, M.E. Sharpe,
Armonk, NY, 2007.

[14] K. Crowston, H. Annabi, J. Howison, DeWning Open Source Soft-
ware project success, presented at Proceedings of the 24th Interna-
tional Conference on Information Systems (ICIS 2003), Seattle,
WA, 2003.

[15] K. Crowston, J. Howison, H. Annabi, Information systems success in
free and open source software development: Theory and measures,
Software Process: Improvement and Practice 11 (2) (2006) 123–148.

[16] K. Crowston, C.S. Osborn, A coordination theory approach to pro-
cess description and redesign, in: T.W. Malone, K. Crowston, G. Her-
man (Eds.), Organizing Business Knowledge: The MIT Process
Handbook, MIT Press, Cambridge, MA, 2003.

[17] B. Curtis, H. Krasner, N. Iscoe, A Weld study of the software design
process for large systems, Communications of the ACM 31 (1988)
1268–1287.

[18] B. Curtis, D. Walz, J.J. Elam, Studying the process of software design
teams, in: Proceedings of the Fifth International Software Process
Workshop On Experience With Software Process Models, Kenne-
bunkport, ME, United States, 1990, pp. 52–53.

[19] D.E. Damian, D. Zowghi, Requirements Engineering challenges in
multi-site software development organizations, Requirements Engi-
neering Journal 8 (2003) 149–160.



K. Crowston et al. / Information and Software Technology 49 (2007) 564–575 575

[20] P.S. de Souza, Asynchronous organizations for multi-algorithm prob-
lems, in: Department of Electrical and Computer Engineering, Mellon
University, Carnegie, 1993.

[21] C. Di Bona, S. Ockman, M. Stone, Open Sources: Voices from the
Open Source Revolution, O’Reilly & Associates, Sebastopol, CA,
1999.

[22] J.A. Espinosa, R.E. Kraut, J.F. Lerch, S.A. Slaughter, J.D. Herbsleb, A.
Mockus, Shared mental models and coordination in large-scale, distrib-
uted software development, presented at Twenty-second International
Conference on Information Systems, New Orleans, LA, 2001.

[23] E. Franck, C. Jungwirth, Reconciling investors and donators: the gov-
ernance structure of open source, Lehrstuhl für Unternehmensfüh-
rung und -politik, Universität Zürich, Working Paper No. 8, June
2002.

[24] B.G. Glaser, A.L. Strauss, The Discovery of Grounded Theory: Strat-
egies for Qualitative Research, Aldine Publishing, Chicago, 1967.

[25] I.-H. Hann, J. Roberts, S. Slaughter, R. Fielding, Economic incentives
for participating in open source software projects, in: Proceedings of
the Twenty-third International Conference on Information Systems,
2002, pp. 365–372.

[26] R. Heckman, Q. Li, X. Xiao, How voluntary online learning commu-
nities emerge in blended course, presented at Hawaii International
Conference on System System (HICSS-39), Kauai, Hawaii, 2006.

[27] J.D. Herbsleb, R.E. Grinter, Splitting the organization and integrating
the code: Conway’s law revisited, presented at Proceedings of the
International Conference on Software Engineering (ICSE ’99), Los
Angeles, CA, 1999.

[28] J.D. Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter, An empirical
study of global software development: distance and speed, presented
at Proceedings of the International Conference on Software Engineer-
ing (ICSE 2001), Toronto, Canada, 2001.

[29] G. Hertel, S. Niedner, S. Herrmann, Motivation of software develop-
ers in open source projects: an internet-based survey of contributors
to the Linux Kernel, Research Policy 32 (2003) 1159–1177.

[30] W.S. Humphrey, Introduction to Team Software Process, Addison-
Wesley, Reading, MA, 2000.

[31] S.L. Jarvenpaa, D.E. Leidner, Communication and trust in global vir-
tual teams, Organization Science 10 (1999) 791–815.

[32] K. Knorr-Cetina, Epistemic Communities, Harvard Education Press,
Cambridge, MA, 1999.

[33] B. Kogut, A. Metiu, Open-source software development and distributed
innovation, Oxford Review of Economic Policy 17 (2001) 248–264.

[34] R.E. Kraut, C. SteinWeld, A.P. Chan, B. Butler, A. Hoag, Coordination
and virtualization: the role of electronic networks and personal rela-
tionships, Organization Science 10 (1999) 722–740.

[35] J. Lerner, J. Tirole, The open source movement: key research ques-
tions, European Economic Review 45 (2001) 819–826.

[36] J. Ljungberg, Open source movements as a model for organizing,
European Journal of Information Systems 9 (2000).

[37] T.W. Malone, J. Yates, R.I. Benjamin, Electronic markets and elec-
tronic hierarchies, Communications of the ACM 30 (1987) 484–497.

[38] G. Mark, Conventions for coordinating electronic distributed work: a
longitudinal study of groupware use, in: P. Hinds, S. Kiesler (Eds.),
Distributed Work, MIT Press, Cambridge, MA, 2002, pp. 259–282.

[39] M.L. Markus, B. Manville, E.C. Agres, What makes a virtual organi-
zation work? Sloan Management Review 42 (2000) 13–26.

[40] M. Michlmayr, Managing volunteer activity in free software projects,
presented at Proceedings of the 2004 USENIX Annual Technical
Conference, FREENIX Track, 2004.

[41] M.B. Miles, A.M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, second ed., Sage Publications, Thousand
Oaks, 1994.

[42] A. Mockus, R.T. Fielding, J.D. Herbsleb, A case study of Open Source
Software development: the Apache server, presented at Proceedings
of the International Conference on Software Engineering
(ICSE’2000), 2000.

[43] M.D. Myers, Qualitative research in information systems, MIS Quar-
terly, vol. 21, pp. MISQ Discovery updated version 28 December
1999, http://www.auckland.ac.nz/msis/isworld/, page accessed on 31
December 1999, 1997.

[44] B.A. Nejmeh, Internet: a strategic tool for the software enterprise,
Communications of the ACM 37 (1994) 23–27.

[45] M. O’Leary, W.J. Orlikowski, J. Yates, Distributed work over the cen-
turies: trust and control in the Hudson’s Bay Company, 1670–1826,
in: P. Hinds, S. Kiesler (Eds.), Distributed Work, MIT Press, Cam-
bridge, MA, 2002, pp. 27–54.

[46] R.J. Ocker, J. Fjermestad, High versus low performing virtual design
teams: a preliminary analysis of communication, presented at Pro-
ceedings of the Thirty-third Hawaii International Conference on Sys-
tem Sciences (HICSS-33), 2000.

[47] E.S. Raymond, The cathedral and the bazaar, First Monday 3 (1998).
[48] E.S. Raymond, The cathedral and the bazaar, Knowledge Technology

& Policy 12 (1999) 23–49.
[49] S. Sawyer, P.J. Guinan, Software development: processes and perfor-

mance, IBM Systems Journal 37 (1998) 552–568.
[50] W. Scacchi, The software infrastructure for a distributed software fac-

tory, Software Engineering Journal 6 (1991) 355–369.
[51] W. Scacchi, Understanding the requirements for developing

Open Source Software systems, IEE Proceedings Software 149 (2002)
24–39.

[52] C.B. Seaman, V.R. Basili, Communication and organization in soft-
ware development: an empirical study, Institute for Advanced Com-
puter Studies, University of Maryland, College Park, MD, USA, 1997.

[53] I. Stamelos, L. Angelis, A. Oikonomou, G.L. Bleris, Code quality
analysis in open source software development, Information Systems
Journal 12 (2002) 43–60.

[54] K.J. Stewart, T. Ammeter, An exploratory study of factors inXuencing
the level of vitality and popularity of open source projects, in: Pro-
ceedings of the Twenty-third International Conference on Informa-
tion Systems, 2002, pp. 853–857.

[55] P.C. van Fenema, Coordination and control of globally distributed
software projects, in: Erasmus Research Institute of Management,
Erasmus University, Rotterdam, The Netherlands, 2002, p. 572.

[56] D.B. Walz, J.J. Elam, B. Curtis, Inside a software design team: knowl-
edge acquisition, sharing, and integration, Communications of the
ACM 36 (1993) 63–77.

[57] M.B. Watson-Manheim, K.M. Chudoba, K. Crowston, Discontinu-
ities and continuities: a new way to understand virtual work, Informa-
tion, Technology and People 15 (2002) 191–209.

[58] P. Wayner, Free For All, HarperCollins, New York, 2000.
[59] E. Webb, K.E. Weick, Unobtrusive measures in organizational the-

ory: a reminder, Administrative Science Quarterly 24 (1979) 650–659.
[60] Y. Yamauchi, M. Yokozawa, T. Shinohara, T. Ishida, Collaboration

with lean media: how open-source software succeeds, presented at
Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW’00), Philadelphia, PA, 2000.

[61] R.K. Yin, Case Study Research: Design and Methods, Sage, Beverly
Hills, CA, 1984.


